Standard Conformance Quickstart

Production-ready governance for interactive applications and user-facing systems.

Production Ready

Designed for: Production apps, interactive systems, user-facing deployments
Performance: Negotiable latency (50ms-1000ms based on risk)
Features: Governance contracts, all interventions, audit trails


What You Get

Standard conformance adds production-critical features:

Feature Minimal Standard
Governance Contracts [NO] [YES] REQUIRED
Performance SLAs [NO] Uniform 300ms [YES] 50ms-1000ms negotiable
All six intervention types [NO] OK/BLOCK only [YES] Five primary levels: OK, Nudge, Escalate, Block, Halt, plus orthogonal Flag
Trust debt system [NO] [YES]
Tripwires [NO] [YES] All categories
ReflectionDB [NO] In-memory [YES] Persistent (1 year)
Framework integration [NO] [YES] LangChain, AutoGPT, etc.

Time to implement: 1-2 days


Step 1: Install

pip install acgp-sdk acgp-langchain

Step 2: Create Governance Contract Policy

Governance contracts let you negotiate latency/quality trade-offs per action:

blueprint.yaml
# Standard conformance with governance contracts

# Default contract for all actions
default_contract:
  risk_level: "low_risk"
  performance_budget:
    latency_budget_ms: 100
    fallback_behavior: "allow_and_log"

# Per-action contracts
contracts:
  # Interactive chat - needs speed
  - action: "generate_response"
    risk_level: "low_risk"
    performance_budget:
      latency_budget_ms: 50
      fallback_behavior: "allow_and_log"
      tier_budgets:
        tier_0: 20
        tier_1: 30

  # Customer refunds - needs safety
  - action: "issue_refund"
    risk_level: "elevated_risk"
    performance_budget:
      latency_budget_ms: 300
      fallback_behavior: "cached_decision"
      tier_budgets:
        tier_0: 50
        tier_1: 250

  # Financial transactions - maximum safety
  - action: "execute_trade"
    risk_level: "critical_risk"
    eval_tier: 2  # Deep LLM analysis
    performance_budget:
      latency_budget_ms: 1000
      fallback_behavior: "deny"
      tier_budgets:
        tier_0: 50
        tier_1: 200
        tier_2: 750

# Tripwires (hard limits)
tripwires:
  - id: "daily_refund_limit"
    condition: "daily_refunds > 5000"
    action: "HALT"
    message: "Daily refund limit exceeded"

  - id: "high_value_transaction"
    when:
      action: "execute_trade"
    condition: "amount > 100000"
    action: "ESCALATE"
    message: "High-value transaction requires approval"

# Trust debt configuration
trust:
  initial_debt: 0.2
  decay_rate: 0.95  # per 24 hours
  intervention_penalty:
    block: 0.1
    escalate: 0.05
    flag: 0.02

Step 3: Use with Manual Traces

from acgp import GovernanceSteward, CognitiveTrace

# Initialize with Standard conformance
steward = GovernanceSteward(
    blueprint_file="blueprint.yaml",
    conformance_level="standard",
    acl_tier="ACL-3"
)

# Create trace for elevated-risk action
trace = CognitiveTrace(
    reasoning="Customer requested refund for defective product. Order #12345 shows purchase 5 days ago. Reason matches return policy.",
    action="issue_refund",
    parameters={
        "order_id": "12345",
        "amount": 250.00,
        "reason": "defective_product"
    },
    confidence=0.92
)

# Evaluate with governance contract
result = steward.evaluate(trace)

# Handle all intervention types
if result.intervention == "OK":
    issue_refund(250.00, "12345")

elif result.intervention == "NUDGE":
    log.info(f"Nudge: {result.message}")
    issue_refund(250.00, "12345")  # Proceed with logging

elif result.intervention == "FLAG":
    log.warning(f"Flagged: {result.message}")
    issue_refund(250.00, "12345")  # Proceed but flag for review
    audit.flag_for_review(trace, result)

elif result.intervention == "ESCALATE":
    approval = request_human_approval(trace, result)
    if approval.approved:
        issue_refund(250.00, "12345")
    else:
        notify_customer("Refund requires additional review")

elif result.intervention == "BLOCK":
    log.error(f"Blocked: {result.message}")
    notify_customer(f"Cannot process refund: {result.message}")

elif result.intervention == "HALT":
    log.critical(f"Agent halted: {result.message}")
    notify_ops_team("Agent halted due to critical violation")
    raise AgentHaltedError(result.message)

# Check governance status
if result.governance_status:
    print(f"Budget consumed: {result.governance_status.budget_consumed_ms}ms")
    print(f"Completed tiers: {result.governance_status.completed_tiers}")

Instead of manually creating traces, use framework wrappers:

LangChain Integration

from langchain.agents import initialize_agent, AgentType
from langchain_openai import OpenAI
from acgp_langchain import GovernedChain, InterventionError
from acgp import GovernanceSteward

# Your existing LangChain agent
llm = OpenAI(temperature=0)
tools = [refund_tool, discount_tool, escalation_tool]
agent = initialize_agent(
    tools, 
    llm, 
    agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION
)

# Add governance wrapper
steward = GovernanceSteward(blueprint_file="blueprint.yaml")
governed_agent = GovernedChain(agent, steward)

# Use normally - traces generated automatically!
try:
    result = governed_agent.run(
        "Customer says their product was defective. Issue a $250 refund."
    )
    print(f" {result}")

except InterventionError as e:
    if e.decision == "BLOCK":
        print(f"⊗ Action blocked: {e.message}")
    elif e.decision == "ESCALATE":
        approval = get_human_approval(e.trace_id, e.message)
        if approval:
            result = governed_agent.run_with_override(e.trace_id)
    elif e.decision == "HALT":
        print(f"⬛ Agent halted: {e.message}")
        notify_ops_team(e.message)

How it works: 1. GovernedChain wraps your LangChain agent 2. Intercepts tool calls via LangChain callbacks 3. Captures reasoning from LLM scratchpad automatically 4. Builds CognitiveTrace and calls steward.evaluate() 5. Raises InterventionError if blocked/escalated 6. You just handle exceptions!

Framework Integrations


Governance Contract Benefits

Use Case Matrix

Use Case Risk Level Latency Budget Eval Tiers Fallback
Chat response low_risk 50ms Tier 0+1 allow_and_log
Customer service elevated_risk 300ms Tier 0+1 cached_decision
Refund approval elevated_risk 300ms Tier 0+1+2 (async) cached_decision
Financial trade critical_risk 1000ms Tier 0+1+2 (sync) deny
Privilege grant critical_risk 5000ms Tier 0+1+2+3 (HITL) deny

Why Contracts Matter

Without contracts (Minimal tier):

All actions: 300ms uniform latency
Chat feels sluggish (should be 50ms)
Financial trades rushed (should be 1000ms)
No fallback strategy

With contracts (Standard tier):

Chat: 50ms (snappy UX)
Refunds: 300ms (balanced)
Trades: 1000ms (thorough review)
Each action has explicit fallback

Result: Better UX + better safety + no ecosystem fragmentation


Performance SLA Examples

Low-Latency Chat

- action: "chat"
  risk_level: "low_risk"
  performance_budget:
    latency_budget_ms: 50
    fallback_behavior: "allow_and_log"
    tier_budgets:
      tier_0: 20  # Fast rules only
      tier_1: 30  # Quick policy check

Latency breakdown: - Tier 0 (20ms): Schema validation, auth, critical tripwires - Tier 1 (30ms): Rule-based policy, rate limits - Total: 50ms P99

Balanced Service Request

- action: "create_ticket"
  risk_level: "elevated_risk"
  performance_budget:
    latency_budget_ms: 300
    fallback_behavior: "cached_decision"
    tier_budgets:
      tier_0: 50
      tier_1: 250

Latency breakdown: - Tier 0 (50ms): Must-pass checks - Tier 1 (250ms): Full policy evaluation, DB lookups - Total: 300ms P99

Deep Financial Analysis

- action: "execute_trade"
  risk_level: "critical_risk"
  eval_tier: 2
  performance_budget:
    latency_budget_ms: 1000
    fallback_behavior: "deny"
    tier_budgets:
      tier_0: 50
      tier_1: 200
      tier_2: 750

Latency breakdown: - Tier 0 (50ms): Critical safety checks - Tier 1 (200ms): Policy and tripwires - Tier 2 (750ms): LLM-based reasoning analysis - Total: 1000ms P99


Trust Debt in Action

Standard conformance includes trust debt tracking:

# New agent starts with debt
agent_trust = steward.get_trust_status("agent-123")
print(f"Trust debt: {agent_trust.current_debt}")  # 0.2

# After 5 days of good behavior (no interventions)
# Debt decays: 0.2 * (0.95^5) ≈ 0.15

# Agent gets flagged once
# Penalty: +0.02
# New debt: 0.17

# After 30 days of perfect behavior
# Debt: 0.17 * (0.95^25) ≈ 0.05

# Agent automatically promoted to higher ACL tier
if agent_trust.current_debt < 0.1:
    steward.promote_agent("agent-123", "ACL-4")

Benefits: - Gradual autonomy earning - Automatic re-tiering - Less oversight for proven agents - More scrutiny for problematic agents


Monitoring & Observability

Standard conformance provides production-grade metrics:

# Get governance metrics
metrics = steward.get_metrics()

print(f"""
Governance Metrics (last 24h):
- Total evaluations: {metrics.total_evaluations}
- Interventions by type:
  - OK: {metrics.interventions['ok']} ({metrics.ok_rate:.1%})
  - Nudge: {metrics.interventions['nudge']}
  - Flag: {metrics.interventions['flag']}
  - Escalate: {metrics.interventions['escalate']}
  - Block: {metrics.interventions['block']}
  - Halt: {metrics.interventions['halt']}
- Average latency: {metrics.avg_latency_ms}ms (P99: {metrics.p99_latency_ms}ms)
- Budget timeouts: {metrics.timeout_count}
- Tripwire violations: {metrics.tripwire_violations}
""")

# Export to Prometheus
steward.export_prometheus_metrics("/metrics")

# Send to DataDog
steward.send_datadog_metrics(api_key=DD_API_KEY)

Migration from Minimal

Upgrading from Minimal to Standard:

# Before (Minimal)
steward = GovernanceSteward(local_blueprint="blueprint.yaml")
result = steward.evaluate(trace)

# After (Standard) - minimal changes!
steward = GovernanceSteward(
    blueprint_file="blueprint.yaml",  # Now with contracts
    conformance_level="standard",
    storage="postgresql://...",  # Persistent storage
    acl_tier="ACL-3"
)
result = steward.evaluate(trace)

# Handle additional intervention types
if result.intervention in ["nudge", "flag"]:
    log.info(f"Soft intervention: {result.message}")
    proceed_with_logging()

Migration checklist: - Add governance_contract to blueprint.yaml - Configure persistent ReflectionDB storage - Handle all 6 intervention types (5 primary levels plus orthogonal Flag) - Set up monitoring/alerting - Test fallback behaviors - Configure trust debt parameters


Next Steps

  • Complete Conformance


    Mission-critical systems with HSM, consensus, 99.99% uptime

    Complete Guide

  • Performance Tuning


    Optimize latency budgets and tier allocation

    Performance Guide

  • Security Hardening


    TLS, signatures, access controls, audit logging

    Security Guide

  • API Reference


    Complete API documentation and examples

    API Docs