ACGP-1005: ARS-CTQ-ACL Integration Framework

Status: Draft
Last Updated: 2026-01-08
Spec ID: ACGP-1005
Normative Keywords: MUST, SHOULD, MAY (per RFC 2119)


TL;DR (30 Seconds)

This document specifies how static risk assessment flows through control assignment to runtime evaluation:

  1. ARS Assessment → Score agent risk (0-15) across 3 dimensions
  2. ACL Mapping → Assign control tier (ACL-0 to 5) based on ARS
  3. CTQ Evaluation → Continuously evaluate action quality (5 metrics, 0-1 score)
  4. Intervention → Apply ACL-specific thresholds to CTQ/Risk Score
  5. Adaptation → Adjust through trust debt and dynamic re-tiering

Key Formula: CTQ = Σ(metric_score × metric_weight) where weights sum to 1.0


Table of Contents

  1. Introduction
  2. ARS Assessment Framework
  3. ACL Tier Mapping and Controls
  4. CTQ Evaluation Process
  5. Decision Thresholds and Intervention Mapping
  6. Tripwire System
  7. Trust Debt and Dynamic Re-tiering
  8. Complete Decision Flow
  9. Implementation Guidelines
  10. Metrics and Monitoring
  11. Conformance Requirements
  12. References

1. Introduction

1.1 Three-Layer Model Overview

ACGP operates through three integrated layers:

┌────────────────────────────────────────────────────────┐
│ Layer 1: ARS Assessment (Static/Periodic)              │
│ ↓ Determines inherent risk                             │
└────────────────────────────────────────────────────────┘
┌────────────────────────────────────────────────────────┐
│ Layer 2: ACL Assignment (Control Level)                │
│ ↓ Establishes required safeguards                      │
└────────────────────────────────────────────────────────┘
┌────────────────────────────────────────────────────────┐
│ Layer 3: CTQ Evaluation (Runtime)                      │
│ ↓ Continuously evaluates behavior                      │
└────────────────────────────────────────────────────────┘

1.2 Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" are to be interpreted as described in RFC 2119.


2. ARS Assessment Framework

2.1 ARS Definition [NORMATIVE]

The Agent Risk Score (ARS) is a composite metric quantifying an agent's potential risk based on three dimensions. Each dimension is scored from 0 (minimal) to 5 (maximum).

Total ARS Range: 0-15 (sum of three dimensions)

2.2 Three Dimensions

Dimension 1: Autonomy

What it measures: Independence of decision-making and action execution

Score Level Description Example
0 None Fully manual, human drives every action Chatbot that only responds
1 Assisted Suggests options, human chooses Email draft assistant
2 Semi-Auto Can execute pre-approved actions Scheduled report generator
3 Supervised Acts independently but notifies Auto-responder with alerts
4 Delegated Broad authority within constraints Expense approver up to $1K
5 Full Unrestricted execution capability Autonomous trading agent

Dimension 2: Adaptability

What it measures: Ability to learn, evolve, and modify behavior

Score Level Description Example
0 Static No learning, fixed behavior Rule-based system
1 Parameterized Adjustable settings, no self-modification Configurable workflow
2 Reactive Learns from feedback, limited adaptation A/B test optimizer
3 Adaptive Modifies strategies based on outcomes Recommendation engine
4 Generative Creates new approaches, explores options Research assistant
5 Self-Modifying Can alter own code/logic/goals Self-improving optimizer

Dimension 3: Continuity

What it measures: Duration and persistence of operation

Score Level Description Example
0 Ephemeral Single-use, no persistence One-time query response
1 Session Lasts one interaction session Single conversation
2 Task-Bound Operates until task completes Project assistant
3 Recurring Regular scheduled operations Daily report generator
4 Persistent Always-on with state retention Virtual assistant
5 Indefinite Long-running, evolutionary Strategic planning agent

2.3 ARS Calculation [NORMATIVE]

ARS_total = Autonomy_score + Adaptability_score + Continuity_score

Range: [0, 15]

Example:

Agent: Autonomous customer support bot
- Autonomy: 4 (can resolve issues independently)
- Adaptability: 3 (learns from interactions)
- Continuity: 4 (always-on service)
ARS = 4 + 3 + 4 = 11 → ACL-4 (Very High Risk)

2.4 When to Assess [NORMATIVE]

ARS assessment MUST be triggered:

  • Before initial deployment (REQUIRED)
  • When agent capabilities change (REQUIRED)
  • When trust debt exceeds threshold (AUTOMATIC)
  • Quarterly re-assessment (RECOMMENDED)

ARS assessment MAY be triggered: - When moving to production - After major incidents - On request from security team


3. ACL Tier Mapping and Controls

3.1 ARS to ACL Mapping [NORMATIVE]

ARS (Agent Risk Score) ACL Tier Risk Level Typical Agent Examples
0-2 ACL-0 Minimal Simple chatbot, FAQ responder
3-4 ACL-1 Low Email assistant, scheduler
5-7 ACL-2 Medium Customer support, data analyst
8-10 ACL-3 High Code generator, research assistant
11-13 ACL-4 Very High Autonomous trader, DevOps agent
14-15 ACL-5 Critical Strategic planner, self-modifying AI

3.2 Required Controls by ACL Tier [NORMATIVE]

ACL-0: Minimal Risk

Controls:

  • Basic logging
  • Rate limits (1000/hour)
  • Simple validation

Performance Target: ~10ms typical, <50ms maximum

ACL-1: Low Risk

Controls:

  • Standard policy rules
  • Human override capability
  • Weekly audit reviews
  • Basic tripwires

Performance Target: ~20ms typical, <100ms maximum

ACL-2: Medium Risk

Controls: - Spend caps and warnings - Approval for sensitive scopes - Daily audit reviews - Blueprint validation - Standard + Critical tripwires

Performance Target: ~50ms typical, <150ms maximum

ACL-3: High Risk

Controls: - Approval gates for high-impact actions - Step-through mode available - Immutable audit trail - Real-time monitoring - All tripwire categories - Trust debt tracking

Performance Target: ~100ms typical, <200ms maximum

ACL-4: Very High Risk

Controls: - Cryptographic signing (ES256) - Isolated execution environment - Multi-agent RBAC - Dual approval for sensitive actions - Advanced anomaly detection - Dynamic re-tiering

Performance Target: ~200ms typical, <350ms maximum

ACL-5: Critical Risk

Controls: - Dual control (two-person rule) - Kill-switch ready - Pre-commit review - Hardware security module (HSM) - Zero-trust architecture - Emergency override procedures - Continuous human oversight

Performance Target: ~500ms typical, <1000ms maximum


4. CTQ Evaluation Process

4.1 CTQ Definition [NORMATIVE]

Cognitive Trace Quality (CTQ) is a runtime score (0-1) evaluating the quality and safety of an agent's action.

Range: [0.0, 1.0] - 0.0 = Completely unacceptable - 1.0 = Perfect quality

Risk Score: Risk = 1.0 - CTQ (used for threshold comparisons)

4.2 Five Standard Metrics [NORMATIVE]

A conformant implementation MUST evaluate these five metrics:

Metric Weight Range Purpose What it Evaluates
Reasoning Quality 0.20-0.30 Logical coherence Consistency, completeness, soundness
Knowledge Grounding 0.15-0.25 Knowledge accuracy Source reliability, factual correctness
Ethical Alignment 0.15-0.25 Value alignment Harm prevention, fairness, transparency
Tool Safety 0.15-0.25 Safe tool usage Permission checks, validation, error handling
Context Awareness 0.10-0.20 Contextual awareness Relevance, appropriateness, user needs

Constraint: Weights MUST sum to 1.0

4.3 Metric Specifications

4.3.1 Reasoning Quality [NORMATIVE]

Purpose: Assess logical coherence and completeness of agent reasoning.

Evaluation Criteria:
Implementations MUST evaluate: - Logical consistency (no contradictions) - Reasoning completeness (no critical gaps) - Evidence support (claims backed by data) - Causal reasoning (valid cause-effect relationships)

Score Interpretation:

Score Range Quality Level Description
0.0-0.3 Poor Incoherent or severely flawed reasoning
0.3-0.6 Fair Partial reasoning with significant gaps
0.6-0.8 Good Generally sound reasoning with minor issues
0.8-1.0 Excellent Clear, complete, well-supported reasoning

Implementation Freedom:
Vendors MAY implement using any method (rules, ML, hybrid) provided it meets evaluation criteria.

4.3.2 Knowledge Grounding Quality [NORMATIVE]

Purpose: Evaluate accuracy and reliability of knowledge sources.

Evaluation Criteria:
Implementations MUST evaluate: - Source credibility (from Certified Source Registry) - Factual accuracy (cross-reference with trusted sources) - Recency (appropriate for temporal context) - Citation quality (proper attribution)

Score Interpretation:

Score Range Quality Level Description
0.0-0.3 Poor Unreliable or unverified sources
0.3-0.6 Fair Mixed reliability, some verification
0.6-0.8 Good Mostly reliable, well-sourced
0.8-1.0 Excellent Highly credible, fully verified

4.3.3 Ethical Alignment [NORMATIVE]

Purpose: Ensure actions align with organizational values and prevent harm.

Evaluation Criteria:
Implementations MUST evaluate: - Harm prevention (no harmful outputs) - Fairness (no discrimination or bias) - Transparency (clear about capabilities/limitations) - Privacy respect (proper data handling)

Score Interpretation:

Score Range Quality Level Description
0.0-0.3 Poor Clear ethical violations
0.3-0.6 Fair Borderline ethical concerns
0.6-0.8 Good Ethically sound with minor concerns
0.8-1.0 Excellent Exemplary ethical behavior

4.3.4 Tool Safety [NORMATIVE]

Purpose: Verify safe and authorized tool usage.

Evaluation Criteria:
Implementations MUST evaluate: - Permission validation (authorized for tool use) - Input validation (safe parameters) - Error handling (graceful failure) - Side effects (no unintended consequences)

Score Interpretation:

Score Range Quality Level Description
0.0-0.3 Poor Unsafe or unauthorized usage
0.3-0.6 Fair Some safety concerns
0.6-0.8 Good Generally safe with minor issues
0.8-1.0 Excellent Fully safe and validated

4.3.5 Context Awareness [NORMATIVE]

Purpose: Evaluate appropriateness for context and user needs.

Evaluation Criteria:
Implementations MUST evaluate: - Relevance (addresses user's actual need) - Appropriateness (suitable for context) - Completeness (sufficiently thorough) - Timing (appropriate urgency/delay)

Score Interpretation:

Score Range Quality Level Description
0.0-0.3 Poor Irrelevant or inappropriate
0.3-0.6 Fair Partially relevant
0.6-0.8 Good Contextually appropriate
0.8-1.0 Excellent Perfectly suited to context

4.4 CTQ Calculation [NORMATIVE]

The final CTQ score MUST be calculated as a weighted average:

CTQ = Σ(metric_score × metric_weight) for all 5 metrics

Where:
- metric_score ∈ [0, 1]
- metric_weight ∈ [weight_range from table]
- Σ(metric_weights) = 1.0

Example Calculation:

{
  "metrics": {
    "reasoning": {"score": 0.90, "weight": 0.25},
    "grounding": {"score": 0.80, "weight": 0.20},
    "ethical": {"score": 0.85, "weight": 0.20},
    "tool_safety": {"score": 0.88, "weight": 0.20},
    "context": {"score": 0.82, "weight": 0.15}
  },
  "ctq_final": 0.854,
  "risk_score": 0.146
}

Calculation:
CTQ = (0.90 × 0.25) + (0.80 × 0.20) + (0.85 × 0.20) + (0.88 × 0.20) + (0.82 × 0.15)
    = 0.225 + 0.160 + 0.170 + 0.176 + 0.123
    = 0.854

4.5 Blueprint Weight Overrides [NORMATIVE]

Reflection Blueprints MAY override default weights within allowed ranges:

scoring:
  weights:
    reasoning: 0.30      # Higher emphasis on reasoning
    grounding: 0.25      # Higher emphasis on grounding
    ethical: 0.20        # Standard
    tool_safety: 0.15    # Lower (simple tools)
    context: 0.10        # Lower (structured context)

Validation: - Each weight MUST fall within its allowed range - Weights MUST sum to 1.0 - Invalid configurations MUST be rejected


5. Decision Thresholds and Intervention Mapping

5.1 Risk Score Calculation [NORMATIVE]

Risk_Score = 1.0 - CTQ_final

Range: [0.0, 1.0]
- 0.0 = No risk (perfect CTQ)
- 1.0 = Maximum risk (zero CTQ)

5.2 Intervention Thresholds by ACL Tier [NORMATIVE]

These thresholds use Risk Score, not CTQ:

ACL OK Nudge Escalate Block Halt
ACL-0 ≤0.40 0.40-0.55 0.55-0.70 >0.70 or tripwire Critical tripwire
ACL-1 ≤0.30 0.30-0.45 0.45-0.60 >0.60 or tripwire Critical tripwire
ACL-2 ≤0.25 0.25-0.40 0.40-0.55 >0.55 or tripwire Critical tripwire
ACL-3 ≤0.20 0.20-0.35 0.35-0.50 >0.50 or tripwire Critical/repeated
ACL-4 ≤0.15 0.15-0.30 0.30-0.45 >0.45 or tripwire Any critical
ACL-5 ≤0.10 0.10-0.25 0.25-0.40 >0.40 or tripwire Any severe

5.3 Decision Algorithm [NORMATIVE]

def determine_intervention(ctq_score, acl_tier, tripwires):
    """
    Determine intervention based on CTQ, ACL, and tripwires.

    NORMATIVE: Tripwires ALWAYS take precedence over CTQ.
    """
    # Check tripwires first (highest precedence)
    if tripwires:
        severe = [t for t in tripwires if t.severity == 'severe']
        critical = [t for t in tripwires if t.severity == 'critical']

        if severe:
            return Intervention.HALT

        if critical:
            if acl_tier >= 3:
                return Intervention.HALT
            return Intervention.BLOCK

    # No tripwires, use CTQ-based thresholds
    risk_score = 1.0 - ctq_score
    thresholds = get_thresholds_for_acl(acl_tier)

    if risk_score <= thresholds.ok:
        return Intervention.OK
    elif risk_score <= thresholds.nudge:
        return Intervention.NUDGE
    elif risk_score <= thresholds.escalate:
        return Intervention.ESCALATE
    elif risk_score <= thresholds.block:
        return Intervention.BLOCK
    else:
        return Intervention.HALT

5.4 Examples

Example 1: ACL-2, High Quality

CTQ = 0.85
Risk = 0.15
ACL-2 thresholds: OK ≤0.25
→ Risk (0.15) ≤ OK threshold (0.25)
→ Intervention: OK

Example 2: ACL-3, Borderline

CTQ = 0.58
Risk = 0.42
ACL-3 thresholds: Escalate 0.35-0.50
→ Risk (0.42) in Escalate range
→ Intervention: ESCALATE

Example 3: ACL-4, Tripwire Override

CTQ = 0.95 (excellent!)
Risk = 0.05
Tripwire: Critical (secrets_detected)
ACL-4 + Critical Tripwire → HALT
→ Intervention: HALT (tripwire precedence)

6. Tripwire System

6.1 Tripwire Definition [NORMATIVE]

Tripwires are critical conditions that immediately trigger interventions regardless of CTQ score.

Purpose: Catch catastrophic conditions that statistical scoring might miss.

6.2 Three Severity Categories [NORMATIVE]

Severity Examples Default Action ACL Modifiers
Standard Budget exceeded, rate limit hit, API quota Block Escalate if ACL ≤ 2
Critical Secrets in output, production write, PII leak Block + Alert Halt if ACL ≥ 3
Severe Data exfiltration, collusion, credential theft Halt Always Halt

6.3 Standard Tripwires [NORMATIVE]

Implementations MUST support these standard tripwires:

Budget Tripwires

- name: spend_cap_exceeded
  severity: standard
  condition: total_spend > budget_limit
  action: block

Rate Tripwires

- name: rate_limit_hit
  severity: standard
  condition: actions_per_hour > rate_limit
  action: block

Secrets Tripwires

- name: secrets_detected
  severity: critical
  condition: output contains API_keys or passwords
  action: block
  acl_override: halt_if_acl_gte_3

Data Tripwires

- name: data_exfiltration
  severity: severe
  condition: large_data_transfer to untrusted_endpoint
  action: halt

6.4 Custom Tripwires [INFORMATIVE]

Organizations MAY define custom tripwires in Blueprints:

tripwires:
  - name: unauthorized_database_write
    severity: critical
    condition:
      tool: database_write
      scope: production
      authorized: false
    action: block
    alert: security_team

6.5 Tripwire Precedence [NORMATIVE]

Rules: 1. Tripwires ALWAYS override CTQ-based decisions 2. Multiple tripwires → Use highest severity 3. Severe tripwires → Always HALT 4. Critical tripwires → ACL-dependent (HALT if ACL ≥ 3) 5. Standard tripwires → BLOCK (or ESCALATE if ACL ≤ 2)


7. Trust Debt and Dynamic Re-tiering

7.1 Trust Debt Definition [NORMATIVE]

Trust Debt is an accumulated risk score from flagged actions that can trigger re-tiering.

Accumulation:

Trust debt is accumulated based on flag severity:
- Low severity flag:    Trust_Debt += 0.1
- Medium severity flag: Trust_Debt += 0.3
- High severity flag:   Trust_Debt += 0.5

Decay:

Trust_Debt *= decay_factor every time_period
Default: decay_factor = 0.95, time_period = 24 hours

7.2 Trust Debt Thresholds [NORMATIVE]

ACL Tier Warning Threshold Re-tier Threshold Suspension Threshold Action
ACL-0 2.0 5.0 10.0 Review → Consider ACL-1
ACL-1 1.5 4.0 8.0 Alert → Consider ACL-2
ACL-2 1.0 3.0 6.0 Escalate → Require ACL-3
ACL-3 0.75 2.0 4.0 Automatic → Force ACL-4
ACL-4 0.5 1.5 3.0 Immediate → Force ACL-5
ACL-5 0.25 1.0 2.0 Already maximum oversight

7.3 Dynamic Re-tiering [NORMATIVE]

Automatic Re-tiering Triggers:

  1. Trust debt exceeded (MUST trigger)
  2. Repeated near-threshold decisions (3+ within 24 hours)
  3. Capability changes detected (agent gains new tools/permissions)
  4. Critical incident (security event)

Re-tiering Process:

  1. Trigger detected
  2. Recalculate ARS (if capabilities changed)
  3. Map to new ACL tier
  4. Apply stricter thresholds immediately
  5. Notify security team
  6. Log re-tiering event to ReflectionDB

Manual Re-tiering:

  • Security team can manually escalate ACL tier
  • Requires justification and approval
  • Cannot be automatically reversed

7.4 Example

Agent at ACL-2:
Day 1: 3 flagged actions, CTQ avg 0.70, debt += 0.90
Day 2: 2 flagged actions, CTQ avg 0.65, debt += 0.70
Day 3: Debt decays: 1.60 * 0.95 = 1.52
Day 4: 4 flagged actions, CTQ avg 0.68, debt += 1.28 = 2.80
Day 5: WARNING THRESHOLD (2.0) exceeded
       → Alert sent to security team
Day 6: 2 more flagged actions, debt = 3.80
       → RE-TIER THRESHOLD (4.0) approached
       → Automatic escalation to ACL-3
       → Stricter thresholds now apply

8. Complete Decision Flow

8.1 End-to-End Flow Diagram

┌─────────────────────────────────────────────────┐
│ 1. Agent Action Initiated                       │
└─────────────────────────────────────────────────┘
┌─────────────────────────────────────────────────┐
│ 2. Cognitive Trace Generated                    │
│    (inputs, reasoning, tools, outputs)          │
└─────────────────────────────────────────────────┘
┌─────────────────────────────────────────────────┐
│ 3. Check Tripwires                              │
│    Severe → HALT                                │
│    Critical → HALT (if ACL≥3) or BLOCK          │
│    Standard → BLOCK or ESCALATE                 │
└─────────────────────────────────────────────────┘
            No Tripwires ↓
┌─────────────────────────────────────────────────┐
│ 4. Calculate CTQ Score                          │
│    • Evaluate 5 metrics                         │
│    • Apply weights                              │
│    • Compute weighted average                   │
└─────────────────────────────────────────────────┘
┌─────────────────────────────────────────────────┐
│ 5. Convert to Risk Score                        │
│    Risk = 1.0 - CTQ                             │
└─────────────────────────────────────────────────┘
┌─────────────────────────────────────────────────┐
│ 6. Apply ACL-Specific Thresholds                │
│    Compare Risk to ACL tier thresholds          │
└─────────────────────────────────────────────────┘
┌─────────────────────────────────────────────────┐
│ 7. Determine Intervention                       │
│    OK / Nudge / Flag / Escalate / Block / Halt  │
└─────────────────────────────────────────────────┘
┌─────────────────────────────────────────────────┐
│ 8. Update Trust Debt (if Flagged)               │
│    Check thresholds → Trigger re-tier?          │
└─────────────────────────────────────────────────┘
┌─────────────────────────────────────────────────┐
│ 9. Log to ReflectionDB                          │
│    TRACE + EVAL + INTERVENTION                  │
└─────────────────────────────────────────────────┘
┌─────────────────────────────────────────────────┐
│ 10. Execute Intervention                        │
│     • OK: Allow                                 │
│     • Nudge: Modify + Allow                     │
│     • Flag: Allow + Audit                       │
│     • Escalate: Pause + HITL                    │
│     • Block: Prevent                            │
│     • Halt: Kill Switch                         │
└─────────────────────────────────────────────────┘

8.2 Decision Pseudocode [NORMATIVE]

def evaluate_and_intervene(cognitive_trace, agent_context):
    """Complete decision flow for ACGP evaluation."""

    # Get agent's ACL tier
    acl_tier = agent_context.acl_tier

    # Step 1: Check for tripwires (highest precedence)
    tripwires = check_tripwires(cognitive_trace)
    if tripwires:
        return handle_tripwire(tripwires, acl_tier)

    # Step 2: Calculate CTQ score
    metric_scores = evaluate_metrics(cognitive_trace)
    ctq_score = calculate_ctq(metric_scores, get_weights(agent_context))

    # Step 3: Convert to risk score
    risk_score = 1.0 - ctq_score

    # Step 4: Apply ACL-specific thresholds
    thresholds = get_thresholds(acl_tier)
    intervention = map_risk_to_intervention(risk_score, thresholds)

    # Step 5: Check if flagging is needed
    should_flag = risk_score > thresholds.flag_threshold

    # Step 6: Update trust debt if flagged
    if should_flag:
        new_debt = update_trust_debt(agent_context, risk_score)
        if new_debt > thresholds.retier_threshold:
            trigger_retiering(agent_context)

    # Step 7: Log everything
    log_to_reflectiondb(cognitive_trace, ctq_score, intervention)

    # Step 8: Return intervention decision
    return InterventionDecision(
        type=intervention,
        ctq_score=ctq_score,
        risk_score=risk_score,
        rationale=generate_rationale(metric_scores, thresholds),
        flagged=should_flag
    )

9. Implementation Guidelines

9.1 Minimum Viable Implementation

Required for Minimal Conformance:

  • ARS assessment with 3 dimensions
  • ACL mapping (0-15 → 0-5)
  • CTQ calculation with 5 metrics
  • Risk score conversion
  • ACL-specific thresholds
  • OK and BLOCK interventions (Nudge, Escalate, Halt, and orthogonal Flag optional for Minimal)
  • Standard tripwires (optional)
  • Basic trust debt tracking (optional)
  • ReflectionDB logging (optional)

9.2 Production-Ready Implementation

Additional requirements for Standard Conformance:

  • All Basic requirements
  • Critical + Severe tripwires
  • Dynamic re-tiering
  • Blueprint weight overrides
  • Custom tripwire definitions
  • Distributed ReflectionDB
  • Performance monitoring
  • Alert integration

9.3 Enterprise Implementation

Additional requirements for Complete Conformance:

  • All Standard requirements
  • Advanced anomaly detection
  • ML-based metric scoring
  • Auto-tuning thresholds
  • Multi-region deployment
  • High availability (99.99%)
  • HSM integration
  • Zero-trust architecture

10. Metrics and Monitoring

10.1 Required Metrics [NORMATIVE]

Implementations MUST track and expose:

Evaluation Metrics:

  • CTQ score distribution (histogram)
  • Per-metric scores (5 separate histograms)
  • Risk score distribution
  • Intervention type counts

Performance Metrics:

  • Evaluation latency (p50, p95, p99)
  • Throughput (evaluations/second)
  • Error rate

Governance Metrics:

  • Trust debt levels per agent
  • Re-tiering events
  • Tripwire activations
  • Escalation rate

Operations Dashboard:

  • Real-time evaluation throughput
  • Latency percentiles
  • Error rates
  • System health

Governance Dashboard:

  • CTQ score trends
  • Intervention distribution
  • High-risk agents (trust debt)
  • Tripwire frequency

Security Dashboard:

  • Re-tiering events
  • Critical tripwire activations
  • Escalation patterns
  • Anomaly detections

11. Conformance Requirements

A conformant implementation MUST meet these requirements:

11.1 Assessment Requirements [NORMATIVE]

  • Implement complete ARS assessment with 3 dimensions
  • Use standard scoring rubrics (0-5 per dimension)
  • Map ARS (Agent Risk Score) to ACL tiers using defined ranges
  • Trigger assessments at all mandatory points

11.2 Runtime Requirements [NORMATIVE]

  • Calculate CTQ scores using 5 standard metrics
  • Apply ACL-specific decision thresholds correctly
  • Implement all 6 intervention types (OK/BLOCK required; Nudge/Flag/Escalate/Halt for Standard+)
  • Support orthogonal flagging with trust debt

11.3 Adaptation Requirements [NORMATIVE]

  • Implement tripwire system with 3 severity categories
  • Support trust debt accumulation with configurable decay
  • Enable dynamic re-tiering based on defined triggers
  • Provide both automatic and manual re-tiering paths

11.4 Operational Requirements [NORMATIVE]

  • Meet performance targets for target ACL tiers
  • Maintain audit logs with specified retention
  • Expose tuning parameters
  • Track and report all required metrics

12. References

Normative References

  • ACGP-1000: Core Protocol Specification
  • ACGP-1001: Terminology and Definitions
  • ACGP-1002: Architecture Specification
  • ACGP-1003: Message Formats & Wire Protocol
  • ACGP-1004: Reflection Blueprint Specification
  • RFC 2119: Key words for use in RFCs

Informative References

  • NIST AI Risk Management Framework: Risk assessment methodologies
  • ISO/IEC 23053: Framework for AI system governance
  • IEEE 7000: Model for addressing ethical concerns

Implementation Checklist

  • ARS assessment implemented (3 dimensions, 0-5 scoring)
  • ACL mapping correct (ARS 0-15 → ACL 0-5)
  • All 5 CTQ metrics implemented
  • Weighted average calculation correct
  • Risk score conversion (1.0 - CTQ)
  • ACL-specific thresholds applied
  • OK and BLOCK interventions working (all six types for Standard+: five primary levels plus orthogonal Flag)
  • Tripwire system with 3 severities
  • Trust debt tracking functional
  • Dynamic re-tiering enabled
  • ReflectionDB logging active
  • Metrics exposed for monitoring

End of ACGP-1005